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An asymptotic investigation of =he problem of seepage under a dam in a layer of 
ground of finite thickness is described. The solution and the physical charac- 
teristics of the flow are presented. 

We will consider plane seepage flow under a dam in a layer of ground of finite power R 
with a power seepage law 

g r a d H : - - c D ( w ) . w / ~ v ,  d ) ( w ) : ~ , ~ ,  k > O .  (i) 

After mapping the plane of flow in the plane of the hodograph (w, 0) the problem reduces to 
solving the equation 

w ~ H ~  + (2 -- k) wH~ + kHoo = 0 (2) 

in the half strip 0 ~ w < oo, -~/2 ~ 0 ~ 0 with the boundary conditions 

HCw, - -  n/2) = H, (0 < w < oo); H(w, O) = (Hi + H2)/2(a ~ w <.~ b); 

Ho(~v, 0 ) = 0  ( O ~ w ~ a ,  b ~ w < o o ) .  (3) 

We will introduce as the new unknown 

h(w, O)= 2w-~[H(w'  O)--H~] ,  ~ z = ( k - - 1 ) / 2 .  (4) 
H~ - -  H~ 

For h(w, 0) we have the problem 

wZhw~ + wh w + khoo - -  <z2h = O, 

h ( ~ , - - ~ / 2 )  = o, h0(~, 0 ) = 0  ( O ~ a ,  b ~ < ~ < o o ) ,  (5) 

h(w, O)=w-~= [(w) (a<~_,<b) .  

Applying a Mellin transform with respect to the variable w and parameter s =o problem (5), 
we obtain for h*(s, O) a differential equation, by solving which, taking into account the 
first conditions of (5), we obtain 

h* (s, 0) = A (s) sin ~ (0 + ~/2), ~ = V (s 2 - -  ~Dfk, (6) 

h*(s, O)= ~ h(a,, O)w~-~dw. (7) 
0 

We will denote by f+(w) and f_(w) =he unknown quantities h(w, 0) when O = 0, w > b and w < a, 
respectively. Then, to obtain A(s) from the boundary conditions (5), we have 

A (s) sin (a~/2) = %0_ (s) + q~+ (s) -}- % (s); q!+(s): i [+~s-ldw' 
b 

qL(s) = f _ ~ - l d w ,  %(s) = j'/~-~dw = (b s-~- as-~) / (s--~) ,  
0 a 

b 
�9 A (s) ~ cos (~ /2 )  = f ho (w, O)w~-ldw = X (s). 

a 

(8) 

(9) 
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In relations (8) and (9), X(s) and ~o(s) are integer functions of the order of increase of 
expsg, g=max Ilna, inbl; ~+isafunctionthatisanalyticalwhenRes<~ +e(s >0);~_ is a 
function that is analytical when Re s > a -- e, and both functions decrease in the correspond- 
ing half planes. Functions with a similar analytical structure will henceforth be called 
"plus" and "minus" functions, respectively. Eliminating A(s) from (8) and (9), we obtain 
the equation 

[r (s) + % (s) + r (s)] ~ ctg (~/2) = X (s). (10) 

It contains three unknown functions ~-,~+, and X. Nevertheless, it is sufficient to deter- 
mine all these functions, taking into account their analytical structure. Multiplying Eq. 
(i0) by b ~-s, we have 

[Y_(s) -k Y+(s) § H_(s)l K(s) = Z_(s). (11) 

Here Y_(s) = ba -S~_(s ) ,  H (s) = b ~ - S % ( s ) ,  Z_(s) = ba-Sx(s)  a re  minus f u n c t i o n s ,  whi le  Y+(s) = 
b~-S~+(s) is a plus function. The coefficient K(s) can be factorized in the  form 

K (s) = ~ ctg (agl2) = K+ (s) K ( s ) ,  

(12) / K~(s)= V (~/~k-cth(~/2]/k)  ~=H~[1 ~ s/]/~2+ h(2n--1) z] [1 ~ s/1/~z + 4knZl. 

Here K+(s) and K_(s) are plus and minus functions, respectively. From (Ii) and (12) we 
obtain 

Y_K+ -t- Y+K+ -}- H K+ = Z_/K (13) 

Similarly, multiplying (I0) by ga-s and assuming that 

Y i =  a~-s~-, H+= a~-s%, Z+= a~-sX, Y+= a~-S%, (14) 

we obtain 

YLK_+ Y+K_+ H~K_= z+/K+. (15) 

It is obvious that the principal aspect is that the integer functions ~o and X, after multi- 
plication by b ~-s, are minus functions, and after multiplication by a u-s are plus functions, 
whereas the class of functions %o_ and ~+ do not change. It is also clear that 

r.,_= d~-~r*, , Z-I_ = ,~,~-~q*+, Z_ = ~-~Z*+ (d = bin, g =  a/b). (16) 
Equations (13) and (15) hold in the band IRe(s --a)[ < e. We will represent them in the form 

Y+K+-}- L+q-- D+= Z_/K --  L_-- D_, (17) 

FIN_+ L* § O*__= Z+/K+-- L$--D*+. (18) 

Here we will use the expansion of the functions Y_K+, H_K+, Y~_, H~_, that are analytical 
in the band [Re(s -- a)[ < ~, in a sum of the plus and minus functions 

Y_K+= L++ L_, H K+= D++ D_, 
(19) 

w;~(_= L;+ L 2, H;/(_= D; + O*, 

which can be done using integrals of the Cauchy type [i, 2] 

azh6+i= 
L+ = 4- 1 a~ (~)'q~+(~) d~, 

2r~i a+8-i~ ~--  s 

D + = 4 -  1 [ ( - - g -  )K+(~) d~, 

1 (dr-=-  1) 
n~ = -4 2 2hi ~:o.-z.. (~ - -  s) (~ - -  (z) d~ 

(0 < 6 < @. 

(20) 
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The existence of the integrals is ensured by the behavior of the functions K+_(s) (-/~s) at 
infinity, and by a priori estimate of the behavior of the unknown functions 9+ and ~_ (being 
Mellin transforms of bounded functions, 9+ and 9- approach zero as s § ~). Equations (17) 
and (18) are Wiener-qlopf equations, in view of which the functions 

P(s)= Y+K++ L++ D+, R e s < ~ + 8 ;  

P ( s ) = Z _ / K - - L _ - - D  , R e s > ~ - - 8 ,  
(21) 

P*(s) = Y*_K_+ L*__+ DL, Re s > cc - -  8; 

P*(s) = Z+/K+-- L+-- D+, Re s < c~-F8 

are analytic integer functions of s. It is easy to show that they decrease at infinity and 
hence, inview of Liouville's theorem, are identically equal to zero. In fact, it follows 
from estimates for K+ and ~+ that L+ + 0 as ISl + " and D_+ + 0 as IS[ + ~. Finally, we have 

Y 
b b 

so that Y+K+ + 0 as [s I + ~. Hence it follows that P(s) -- 0. It can be shown similarly that 
P*(s) - 0. Hence, we have from (17), (18), and (21) 

Y+= -- (i++ D+)/K+, Fix -- (L*_+ DL)/K_ (22) 

or, reverting to the functions 9+ and 9_ 

b s-~ [ 1 .I' b~-$/~+ (~) qg_(~)d~ -I- I o~+6-{-i=.i ( 1 -  g~-~)K+(Od~] q) +(s) (23 ) 
g+(s) ~ 2~i c~+6-i. ~ - -  s 2r~----~+8_i~ (~ - -  s) (~ - -  ~) ~ ' 

K_(s) 2~i ~-8-~-  ~ - -  s 2~i  ~ _ ~ _ ~  (~ - -  s) (~ - -  ~)  

Relations (23) and (24) are integral equations for the analytical functions ~+ and ~_. We 
will solve these equations for small values of the parameter g, which corresponds to the 
asymptotic of a heavy layer of ground. We will first consider the expression 

1 .[ (1-- #-=)  K+(0 d~. (25) 
~1o (s) -- 2~i  ~+~-t~ ~ - -  s 

The contribution to the integral from the first term in the square brackets i8 

K+ (s)/(s - -  ~) + K+(~)I(~ - -  s)l. 
To calculate the contribution from the second term we note that the function g~-~ is analyti- 
cal in the right half plane of ~ and decreases as exp(~ in g). On the other hand, K+(~) 
extends into the right half plane as a meromorphic function, which follows from the represen- 
tation 

K +(s) = K(s)/K_(s) = ~ ctg (a~/2)/K (s) (26)  

and the regularity of K_(s) in the right half plane. Denoting the poles and residues of this 
function by s+ n and rn+ , we have 

[ ~ ] -~ /2  8n% = 1 + s+(o~2+ 4k]~) - ' / ~  ( 27 )  
s+=]/  o~2+4kn~; r+= _-~-~- c t h ( ~ / 2 l / - k - ) _  ~s + H l+s+[o~+k(2]_l)~]_,/~ 

Then, transferring the contour of integration successively to the right we obtain ~176176 
1 g~,-c~ K+ (~) d~ ----z~ , o . + ~  o0" (28) 

2r~i e+ _~| (~- -s ) (~- -~)  n=lt'-~,~ - )~, n-- ) 

It is obvious that as g -~ 0 the whole of this expression approaches zero as 

g,+-~,  ,.+l[(s+_s)(s+l_OO]. 
Hence, 

no(s)---- [K+(s) - -  K+(oO]/(s - -  o 0 -4- ~ g n--= ry/ [ (s+ " __ s)(s+ - -  or ( 29 )  
a = l  
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On the other hand, it is easy to obtain for the first term of Eq. (23) 

<z+6+i - + beC-sn fo (S+~ r + I~ = ~I .[ b~-gK+(~) r d; = ~ ._ ,  ,,, n (30)  
2ai  ,z+v-~- ~ -- s ,=l  s+- -  s 

But for real positive s 

I,=.(s)i = ! h(w) ws-1 dw [ ~--- [/'/(W) - -  ! - / , l ~ v ' - ~ - ' a ~  < 2 a ~ - ~ ' / ( s -  ~), I~e ~ > ~, 

so that :  f r o m  (30)  we h a v e  t h e  e s t i m a t e  

I t,l < ~ 2 g  s+-= r+/[(s+ - -  a) (s+ - -  s)l. (31)  

Hence it follows t h a t  as g -~ 0 

b s - ~ [  K+(s)--K+(~ ~ - O ( g ~ - ~ ) ] .  (32) 
,~+ (s) = - K+ (s---) s -  = 

It can be shown in exactly the same way that 

qC(s) : K_as----~ [ ( s )  K_(s)--K_(~Z)s - -  ~z + 0 (g~-Si- ) ] '  (33) 

where we have denoted the poles and residues in their meromorphic function K-(s) by s n and 
r n (it is obvious that all the Sn lie on the real axis to the lef~ of the point s = u). 
Hence, we have found the principal terms of the representations for ~+ and ~_ (we denote 
them by (p~ and ~_o). Taking (p~ and <p_o as the zeroth approximation, we can obtain 9+ and ~_ 
from (23)-(24) with any required accuracy by iteration. Thus, to a first approximation, 
using (30), we have 

[ r+K-(o:)g~+l-~ ] ,~:(s) - b'-~' . K + ( s ) - -  K+(oO 4 
K +  (s) s - -  ~ (s+, -- s)(s+-- ,~)K_(s+) ' 

. ( 3 4 )  

rTK+ (a) d'-f - ~  ] 
- ~-~-s) L ~ - ~  (s;-~--~-~----~)---~-+(s?) J 

We will now determine ~he elements of the flow. According ~o (8) we have 

A(s) = (~++ q) + %)/sin (r~/2) -- 1 [ b ~-o~ - -  a '-c~ 
- ' sin (rt~/2) L s - -  o~ 

_ K + ( s ) - -  K+(oO b~-~' § . . . .  - 
(s - -  ~)K+(s) K_ (s) s - -  ~ sin (z~/2)-" (s - -  o 0 K_(s)K+(s) (35) 

h*(s, 0) = sin (0 + a/2)~ [K_(s)K+(oOb'-c" - -  K_(~z)K+is)a `-c'] . 
sin (~ /2 )  L (s - -  a) K_(s) K+(s) J 

(36) 

Finally, we obtain 

H (w, 0) = H~ + h (w, 8) w~ = H~ + 

(37) AH sin (o + W2) 

For the strength of the layer of ground R we obtain (the physical characteristics of ghe flow 
are established from the equations given in [3]) 

b 

R = / kw -k -1  Ho(w, O) dw = kAH _ _  
a 2 

1 x+e.t, b~ a~ 
X 

sin (~)/2) ( s - -  ~) K _ ( s )  K+(s )  

kAH T~| ~-') - -  K_(~)K.(s) (b-kg ~-(z-  a -k) da. 
2 ~ i  , _ %  2 (r - -  k - -  s) (s  - -  ~z) 

I 

(38) 
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We further have (~ = ~ + 6): 

~+~" 1 ~J~ K_(s)K+(~)a-kg  ~-~ 1 ~ 1<_ (s) K+ (o0 b-~'ds = O, ~ ds = 
2~i ~_..~ (r k- -s)  (s--a)  2ai  , - i .  ( s - -  a + k)(s--a)  

= f l_(~)  K+(~) a -k  _ K_(**-- k.)K+(cO a-~g~ + a -  k t% (~) x 
k k 

X ~__,(ff__~ ( s : - - - a +  k) = K+(a)iK_(cz)-- K_(~ -- k)g k ] a -k /k  + . . . .  

1 g_(a) g+(s) b -u  g~-~: ds = ~ K (a) r 7 b -~ g"~-= 

.~+j" K_(c 0 K+(s)__a -~ ds = _ K_ (o~) K+(~) a-~/k  + K_ (o0 K+(~ --: k) a-~/k. 1 

2ai  ~-i| ( s - -  a + k) ( s - -  a) 

As a result we obtain (as g + 0) 

= A//K_(=) K+Ca -- k) a-~/2. 

For the flow rate of the seeping flow we have 

b ~ - ~  - -  - -  

f w -~ Ho (w, O) dw -~ khtt_ ~ (b c* ~ ~+~ -- a ~-~-~+' ) [K-(s)K+(~ b~-'~ -- K.(a)K+(s)a~-e] ds. q k 
"J. 2hi  "~-'i| 2 (~t - -  k - -  s -6 1) (s - -  ~) 

This expression is e x a c t l y  ~he same as (38), and consequently 

Q = kAH[K_(a)K+(~z - -  k + 1) - -  K_(a - -  k + 1) K+(c0 g~-X] a~-~/[2 (k - -  1)]. 

Finally, we obtain for the length of the dam L 

L/2 = i ~z-~Hw(w' O) dw = (H~ + H~)/2b ~ +t~ X 
b 

(39) 

(40) 

or, by the definition of ~+, 

L/2 = k~+ (~ -- k) -- AH/2b ~ . (41) 

Note that Eq. (41) is accurate, without using the asymptotic nature of the solution, Substi- 
tuting (32) into it, we obtain 

L/2 = I K + ( ~ - - k ) - -  K+(a) - - 1 1  A H / 2 b h -  AHK+(~) 
K+ (~ - -  k) j 2b ~ K+ (~ - -  k) (42)  k 

Using the last terms of asymptotic (34), we have 

L / 2 = - -  AH [ K+(~) r~kK_(~, g ~ _ ~ ]  (43)  
2b k K+(a - -  k) -}- (s~ - -  a -}- k)(s~ - -  a)K+(a - -  k) K_(s~) ' 

+ + 
where r~ and s~ are given by relations (27). As might have been expected, for large values 
of d the value of ~ has only a small effect on the relationship between AH, L, and b. 

The asymptotlcs obtained show that for a fairly heavy layer of ground with an accuracy 

of the order of gS~-~ when calculating the flow charac=eristlcs in the immediate vicinity of 
the dam (the velocity distribution, the heads, and the moment of the pressure forces at the 
base of the dam) one can use the solution of the problem of a dam in an infinite layer of 
ground (however~ when k~l this is no= true for the discharge -- see Eq. (40)). The corre- 
sponding distributions were calculated for ~hls case using =he solutions obtained above wiKh 
a = 0 (in view of the analogy between the problem of the flow around a groove and the flow 
under a dam in a layer of ground of infinite depth, one could also use the solution obtained 
in [4]). The results of =he calculation are shown in Fig. I for Ha = 0. Here we show the 

1251 



H �9 
M 

ql 

0 
o,2 o,~ q~ q~ 2x/z o z ~ # 

Fig. 1 Fig. 2 

K 

Fig. i. Distribution of the head H along the length of the dam 
for different values of k: l) k = 8; 2) k = 6; 3) k = 4; and 4) 
k = 2. 

Fig. 2. Curve of the tilting moment of the pressure forces M at 
the base of the dam with respect to its middle point as a func- 
tion of k[l)- f(k) = M/AHL2]. 

distribution of the head over the length of the dam for different values of k, and the tilt- 
ing moment of the pressure forces at the base of the dam with respect to its middle point 
(Fig. 2). 

NOTATION 

H, generalized heat, m; w, seepage-rate vector, m/sec; #, a dimensionless function de- 
scribing the seepage law| 8, the angle between the seepage rate vector and the Ox axis, deg; 
R, the depth of the layer of ground, m; L, the length of the dam, m. 

i. 

= 

3. 
4. 
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